Redwood Soil Microbes Can Adapt to Climate

Redwood Soil Microbes Can Adapt to Climate

on

Coast redwoods need healthy soil and its tiny organisms to survive. So how will climate change affect the forests’ fungi and bacteria? A research team led by Professor Mary Firestone at the University of California, Berkeley, recently found a way to mimic what the future may hold. Learn more about this research.

Photo by cm195902, Flickr Creative Commons

Pre-Logged Northern Redwood Forests

on

If you want to restore a logged-over redwood forest, how do you decide what should be there? In the past, land managers looked at the mix of species in nearby protected areas. But no one knew for sure whether they represented typical redwood forests—or just the ones with the most interesting or abundant redwoods. Learn more about this research.

Photo by Sean Dreilinger, Flickr Creative Commons

Examining Coast Redwood Genes

on

Genome science has made stunning advances in the past few decades. But until recently, no one had tried to sequence Sequoia sempervirens, the coast redwood. Part of the problem was the species’ complexity. Humans are “diploid,” meaning that for each chromosome, they have one copy inherited from their mother and one from their father. Redwoods, on the other hand, are “hexaploid,” meaning that they have three copies from each side, which triples the size of their genome.

Researchers sampled coast redwoods' DNA at the Russell Research Station in Contra Costa County, California. Photo by Richard S. Dodd

Central California Redwoods More Vulnerable

on

Researchers found in a 2007 study that coast redwoods’ genetic diversity was “very high” throughout the state, and more divergent in Central California. These Central California redwoods are most threatened by climate change and “should be a conservation priority,” said Richard S. Dodd, a professor of plant population genetics at the University of California, Berkeley.

Emily Limm found that western sword fern absorbed the most moisture from fog. Photo by Emily Burns

Fog and Redwood Forest Plants

on

Coast redwood forests depend on fog to survive the nearly rainless summers of California’s Mediterranean climate. It was once thought that redwoods captured this moisture through their roots. But a 2004 Save the Redwoods League-funded study proved that redwoods suck up water through their leaves as well. As a doctoral student at the University of California, Berkeley, Emily Burns set out to discover whether other plants in the redwood ecosystem were equally adept at “foliar uptake.”

Fire is an example of a disturbance event that redwoods face.

Coast Redwoods’ Response to Disturbance Events

on

In 2006, Save the Redwoods League recruited eight scientists to survey scientific literature about how coast redwood forests respond to “disturbance events” such as fires, windstorms and floods. The scientists considered how redwoods fit into two broad categories of trees: those that need major disturbances to perpetuate themselves and those that don’t. The seedlings of disturbance-dependent trees germinate in open spaces, grow quickly to outcompete other vegetation and tend to form even-age stands. Species that don’t need disturbances tend to be shade tolerant, slower growing and longer lived.  They usually grow in uneven-age stands.

Study results showed that at better-watered sites (similar to this one in Humboldt County), redwoods were randomly distributed. Photo by Daniel Lofredo Rota, Flickr Creative Commons

Old Redwood Forest Restoration

on

Old-growth redwood forests are prized for their biological and aesthetic riches. If you’re a land manager trying to restore lands where redwoods have been logged, the old-growth forest is the ideal to which you aspire. But how do you move toward old-growth characteristics most efficiently? Learn more about this research.

Photo courtesy Save the Redwoods League

Amphibian Populations Predict Forest Health

on

In a forest of towering redwoods, the small creatures scurrying underfoot and splashing into streambeds sometimes go unnoticed as visitors crane their necks toward distant treetops. We should look down, though, say researchers from the Redwood Sciences Laboratory, who visited several state parks to study the ecosystems that surround and support those mighty trees. Researchers Garth Hodgson and Hartwell Welsh pay particular attention to tiny amphibians such as frogs, salamanders, newts in redwood forests, because published studies suggest they are indicators of forest health. Learn more about this research.

Growing New Giants Through Canopy Gaps

on

It seems unfathomable that the tiny seedlings Rob York sowed among ash piles in a clearing at Whitaker’s Forest could someday grow to be among the largest creatures on earth. Yet these green specks grew into giant sequoias two years after seeds were strewn in canopy gaps. This species of titan tree has stagnated in regeneration efforts for nearly a century. York, along with his graduate advisor, John Battles, is working on unlocking the secrets to growing new giants. Learn more about this research.

Fire is an example of a disturbance event that redwoods face.

Fires Were Common in Rainy Northern Forests

on

For years, Steve Norman had been told that the humid forests of coastal Northern California must be too wet to burn. Scientists who research fire acknowledge its power as a tool for reshaping the landscape, but some areas were considered nearly immune to fire. This assumption meant that the damp forests of Del Norte Coast Redwoods State Park remained a blank file in the coastal forest fire records.

In this logged forest, alders compete for dominance with Douglas-fir and redwoods. Redwoods here were stunted compared with their relatives in a untouched "old-growth" forest. Photo by Emily King Teraoka

Thinning Would Spur Old-Growth Qualities

on

Upland forests in Redwood National Park have been studied extensively. But until a few years ago, less was known about streamside, or “riparian,” forests, which benefit the park’s salmon habitat by providing shade, erosion control and woody debris in the streams. So Humboldt State University graduate student Emily King Teraoka decided to compare two of the park’s riparian forests: one along Lost Man Creek, which had been clearcut between 1954 and 1962; and one along Little Lost Man Creek, which was mostly untouched. Learn more about this research.

Wonder Plot.

Wonder Plot Study Tells Story of Development

on

In 1923 Emanuel Fritz, then a Professor of Forestry at UC Berkeley, and Woodbridge Metcalf secured for study a one-acre grove of second growth trees along the Big River in Mendocino County. By that year, much of California’s old-growth redwood had been logged and a second generation of trees had begun to grow. Fritz and Metcalf intended to study tree growth on their plot in order to better understand just how a second growth forest develops.

Photo by  William K. Matthias

Land Use and Forest Conservation

on

Dr. Sarah Marvin, professor of Geography at the University of Oregon, has set out to understand how the shape of the land and its use by owners reflect the probability of a privately owned coast redwood forest being protected. The two questions she has asked are: “Are privately owned forests more likely to be protected if they are on bigger parcels?” and “Do traditional, rural land uses as opposed to traditional, residential land uses promote forest preservation?” Answers to these questions might help predict the likelihood of future, private redwood forest protection and—of logged forests—regeneration. Learn more about this research.

Mill Creek. Photo by Evan Johnson

Thinning Speeds Recovery to Old-Growth

on

Dr. Christopher Keyes and Andrew Chittick have found that thinning—removing select trees in a second-growth coast redwood forest—speeds up the forest’s development of old-growth characteristics, which include tall and bulky trees, small gaps in the canopy through which sunlight can penetrate, trees of varying heights, thicker tree branches, understory shrubs and ferns, and healthy young saplings. Learn more about this research.

Photo by yourmap, Flickr Creative Commons

Prehistoric Fires Not Caused by Understory Grasses

on

Grassy fuels on the forest floor were not the cause of frequent prehistoric fires in giant sequoia (Sequoiadendron giganteum) groves, according to UC Berkeley researchers and California State Park ecologists.

Photo by Miguel Vieira, Flickr Creative Commons

Big Trees: A Bank for Soil Bugs

on

Legacy trees, old-growth trees left standing in second-growth redwood forests, could serve as a habitat refuge for terrestrial microarthropods, miniscule bugs that live in the forest floor and maintain healthy soils, not to be confused with the bigger arthropods like spiders and bees. Dr. Michael Camann, Karen Lamoncha and Laura Hagenhauer have found substantially more and a wider variety of the soil bugs underneath these so-called legacy trees than beneath surrounding second-growth trees. Learn more about this research.

Core sampling. Photo by Peter Buranzon

Chemicals in Redwood Rings Indicate Past Water Uptake

on

It’s no coincidence that redwoods live in the thickest part of “California’s fog belt.” The presence of coastal summer fog has long been regarded a necessary ingredient for the health and perpetuation of coast redwood ecosystems. During drier summer months fog supplies trees with moisture and blocks the evaporating rays of direct sunlight, reducing the amount of water that redwoods lose via transpiration. What’s less understood, however, is exactly how fog frequency has varied in the past century and how redwoods have responded to this variation.

Photo by Julie Martin

Bigger and Older Often Means Better Habitat

on

Traditionally we think of forest conservation as protection of large areas of land. Is it possible, though, that just one tree could benefit an ecosystem enough to warrant individual protection? Mary Jo Mazurek and William Zielinski report evidence that suggests legacy old-growth redwoods can do just that. Learn more about this research.

Humboldt Marten.

Redwoods to the Sea Forest Carnivore Tracking Project

on

From time to time, a resident in Humboldt County will submit a report claiming to have spotted a Pacific fisher or a Humboldt marten. Because Pacific fishers are rare, and because the Humboldt marten was previously thought to be extinct due to human influences such as trapping and logging in their old-growth conifer habitat, these animals remain barely documented. The Corridor from the Redwoods to the Sea, built as a passageway for wild creatures, appears to be prime location to spot small carnivores such as fishers and martens, but despite local accounts, the rare sightings remain unverified by scientists. Where have these small predators gone? Learn more about this research.